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Three consecutive dry winters (2015–2017) in southwestern South
Africa (SSA) resulted in the Cape Town “Day Zero” drought in
early 2018. The contribution of anthropogenic global warming
to this prolonged rainfall deficit has previously been evaluated
through observations and climate models. However, model ade-
quacy and insufficient horizontal resolution make it difficult to
precisely quantify the changing likelihood of extreme droughts,
given the small regional scale. Here, we use a high-resolution
large ensemble to estimate the contribution of anthropogenic
climate change to the probability of occurrence of multiyear
SSA rainfall deficits in past and future decades. We find that
anthropogenic climate change increased the likelihood of the
2015–2017 rainfall deficit by a factor of five to six. The prob-
ability of such an event will increase from 0.7 to 25% by the
year 2100 under an intermediate-emission scenario (Shared Socio-
economic Pathway 2-4.5 [SSP2-4.5]) and to 80% under a high-
emission scenario (SSP5-8.5). These results highlight the strong
sensitivity of the drought risk in SSA to future anthropogenic
emissions.

drought | climate-change detection | climate extremes |
event attribution | large ensemble simulations

The Day Zero Cape Town drought was one of the worst
water crises ever experienced in a metropolitan area (1, 2).

Droughts are a regular occurrence in southwestern South Africa
(SSA), having occurred during the late 1920s, early 1970s, and,
more recently, during 2003–2004 (Fig. 1 A and B). However,
the extended winter (April to September [AMJJAS]) 3-y rain-
fall deficit (Fig. 1 A and B; SI Appendix, Fig. S1) which drove
the 2015–2017 Cape Town drought (2–8) was exceptional over
the last century (4, 9). Storage in reservoirs supplying water to
3.7 million people in the Cape Town metropolitan area dropped
to about 20% of capacity in May 2018. As a consequence, strict
water-usage restrictions were implemented to delay water levels
reaching 13.5%, the level at which much of the city’s municipal
supply would have been disconnected (7), a scenario referred to
as “Day Zero” by the municipal water authorities (7). Above-
average winter rain over the rest of the 2018 austral winter
allowed Cape Town to avoid the Day Zero scenario.

While poor water-management practices and infrastructure
deficiencies worsened the crisis (10, 11), the 2015–2017 rainfall
deficit was the main driver of the drought (5). To facilitate the
improvement of water-management practices and the infrastruc-
ture necessary to make the system more resilient, it is critical to
first determine how likely a meteorological drought like the one
in 2015–2017 might be in the coming decades. Increased aridity
is expected in most of southern Africa (12–14) as a consequence
of the Hadley Cell poleward expansion (4, 15–18) and southward
shift of the Southern Hemisphere jet stream (19). Second, the
risk of more extreme droughts should be quantified to under-
stand the potential for emerging risks that could make a Day
Zero event in Cape Town unavoidable.

Previous work (5) has suggested that the Day Zero drought
may have been made 1.4 to 6.4 times more likely over the last
century due to +1 K of global warming, with the risk expected

to scale linearly with one additional degree of warming. Such
estimates make use of statistical models of the probability dis-
tribution’s tail (e.g., the generalized extreme value) applied to
observations and previous-generation [i.e., as those participat-
ing to the Coupled Model Intercomparison Project Phase 3
(CMIP3) (20) and 5 (21)] climate models. CMIP3 and CMIP5
models have been shown to have a systematically biased posi-
tion of the Southern Hemisphere jet stream toward the Equator,
due to insufficient horizontal resolution (19). This produces a
large uncertainty in model projections of jet-stream shifts (22,
23), thus hindering realistic projections of Southern Hemisphere
climate change. Furthermore, for hydroclimatic variables, a sta-
tistical extrapolation of the probability distribution’s tail might
have inherent limitations in providing precise estimates of the
event probability of future extreme events, although its precision
profits from the use of large ensembles (24, 25).

Large ensembles of comprehensive climate models provide
thousands of years of data that allow direct construction of
the underlying probability distribution of hydroclimatic extremes
without relying on a hypothesized statistical model of extremes
(25, 26). South African winter rains have high interannual and
decadal variability due to El Niño–Southern Oscillation (27),
the Southern Annular Mode (28), and interdecadal variability
(29). A multidecade to multicentury record may be required
to detect the emergence of statistically significant trends in
regional precipitation extremes. A large ensemble is, thus, a
powerful method to isolate, at the decadal timescale, internal
natural variability (e.g., SI Appendix, Fig. S2) from the forced
signal (30–32).

Significance

The Cape Town “Day Zero” drought was caused by an
exceptional 3-y rainfall deficit. Through the use of a higher-
resolution climate model, our analysis further constrains pre-
vious work showing that anthropogenic climate change made
this event five to six times more likely relative to the early
20th century. Furthermore, we provide a clear and well-
supported mechanism for the increase in drought risk in
SSA through a dedicated analysis of the circulation response,
which highlights how—as in 2015–2017—a reduction in pre-
cipitation during the shoulder seasons is likely to be the cause
of drought risk in southwestern South Africa in the 21st cen-
tury. Overall, this study greatly increases our confidence in the
projections of a drying SSA.
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Fig. 1. (A) Mean 2015–2017 AMJJAS rainfall anomaly relative to 1921–1970. The dashed (continuous) line denotes negative anomalies beyond 1 (1.5) SD.
(B) Time series of the observed (GPCC, blue; CRU, red) 3-y running mean AMJJAS WRI (Materials and Methods) from 1901 to 2017. The 2015–2017 mean
is record-breaking over the period 1901–2017. (C–E) Mean 1921–1970 AMJJAS rainfall (millimeters per month) in observations (GPCC) (C), SPEAR MED (D),
and SPEAR LO (E). The red lines encircle the area receiving at least 65% of the total annual rainfall during AMJJAS used to define WRI. (F) Monthly WRI
in observations and models. Comparison of SPEAR MED with SPEAR LO shows how an enhanced resolution is key to capture finer-scale regional details of
winter rainfall in the relatively small SSA Mediterranean region.

The Seamless System for Prediction and Earth System
Research Large Ensemble
To tackle this problem, we used a comprehensive suite of large-
ensemble simulations from the newly developed Seamless Sys-
tem for Prediction and Earth System Research (SPEAR) global
climate model developed (33) at the Geophysical Fluid Dynam-
ics Laboratory (GFDL; Materials and Methods). SPEAR is the
latest GFDL modeling system for seasonal to multidecadal pre-
diction and projection, and it shares underlying component mod-
els with the CM4 (34) climate model, which participates to the
Coupled Model Intercomparison Project Phase 6 (CMIP6) (35).
In particular, we use the medium horizontal atmospheric reso-
lution (50 km) version of SPEAR—i.e., SPEAR MED, which
has been designed to study regional climate and extremes. The
SPEAR MED simulations include a 3,000-y preindustrial con-
trol simulation (CTRL) and three 30-member ensembles that
account for changing atmospheric compositions arising from
natural sources only (NATURAL) and natural plus anthro-
pogenic sources (HIST + Shared Socioeconomic Pathway 2-4.5
[SSP2-4.5] and HIST + SSP5-8.5; see Materials and Meth-
ods for details). The relatively high horizontal resolution of
SPEAR MED—which makes this large ensemble unique—is key

to better resolving the steep coastal SSA topography, which leads
to orographic enhancement of rainfall during frontal days (4).
SPEAR MED is an excellent tool to investigate SSA droughts
because it has a realistic representation of the SSA winter rain-
fall pattern (Fig. 1 C and D) and seasonal cycle (Fig. 1F), and it
correctly reproduces the amplitude of the interannual, multian-
nual, and decadal natural variability of the SSA winter rainfall
(SI Appendix, Fig. S3).

Event Attribution to Anthropogenic Climate Change
As anthropogenic global warming weakens the basic stationar-
ity assumption which has historically been at the foundation
of water management (36), two key questions are: To what
extent did anthropogenic global warming make the Day Zero
drought more likely? And, how will the probability of occurrence
of another similar or worse meteorological drought change
in the coming decades? To address these questions, we first
assess if the probability distribution of anomalies of the 3-y-
mean Winter Rainfall Index (WRI; Materials and Methods) has
already significantly changed. We directly compare the time-
evolving probability distribution associated with successive 20-y
time windows with that associated with only internal climate
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variability obtained from a long control run at preindustrial forc-
ing (CTRL; see Materials and Methods for details). The two
probability distributions are statistically indistinguishable at the
99.9% level per the Kolmogorov–Smirnov test, during the 20-y
period 1980–2000 (Fig. 2A), but then start to significantly dif-
fer from 1990–2010 onward (Fig. 2 B–D). Hereafter, we refer to
the 2015–2017 WRI negative anomaly as “event 1517.” The aver-
age of the event 1517 probabilities in the five decades 1921–1970
is ∼0.7% (Fig. 2E). This is slightly smaller than the value from
the 3,000-y preindustrial control run and with the NATURAL
experiment (1%)—which profit from the much longer time span
(SI Appendix, Fig. S4A)—but, nevertheless, consistent within
the 95% uncertainty interval. The event probability is station-
ary up to 1980–2000, after which it starts increasing (Fig. 2E).
For 2015–2017, the event probability—obtained by linear inter-
polation of the 2000–2020 and 2010–2030 values—is 3.7% with
a [2.5%,4.7%] 95% CI. This implies a risk ratio—i.e., the ratio
of the probability of the event at given time to its probability in
the early 20th century—of 5.5 times, with a CI of four to eight
(Fig. 2G). Thus, an extreme event that had an average recurrence
interval (37) of 100 years in the early 20th century reduces to a
25-y recurrence interval by present day. This is consistent with
previous work (5), despite the different event definition between
the two studies.

Drought Risk Projections
In the high-emission scenario SSP5-8.5 (intermediate-emission
scenario SSP2-4.5), the event 1517 probability—i.e., the likeli-
hood that rainfall is below the event 1517 threshold for any
random 3-y segment within the 20-y window—is projected to rise
to 20% (13%) around 2045 (Fig 2F and SI Appendix, Figs. S5
and S6) and to reach 80% (25%) by the end of this cen-
tury. For the SSP5-8.5 (SSP2-4.5) scenario, the likelihood of
an event 1517 would thus increase by a factor of 120 (40) rel-
ative to earlier in the 20th century (Fig. 2H). Extending the
findings of previous studies (5) beyond +2 K of mean global
surface temperature increase, we find that, for each degree of
warming, the risk ratio grows at a slower rate after a fast,
ongoing acceleration (SI Appendix, Fig. S7). This implies a tran-
sition to substantially drier and persistent wintertime conditions
over SSA.

Using the same methodology (Materials and Methods), we
can also estimate the distribution and the probability of occur-
rence of a 4-y WRI anomaly at the same intensity of event 1517
(Fig. 2 I and J). This has not occurred yet, but, if it occurred,
could lead to an unavoidable Day Zero. In the absence of
anthropogenic forcing (i.e., CTRL and NATURAL), such an
event has a probability of occurrence of 0.4% (vs. ∼1% for
a 3-y drought). Presently, the probability of occurrence for it
to happen has already substantially increased relative to the
early 20th century (2%), and it is projected to be 15% (8%)
by midcentury under SSP5-8.5 (SSP2-4.5). By the end of the
21st century, a 4-y WRI anomaly will be almost as likely
as 3-y rainfall anomaly of intensity comparable to the 2015–
2017 event.

This suggests that the duration of meteorological droughts
will increase in SSA. We estimate the probability distribution
of the severe (i.e., ≤ −6 mm·month−1) winter (i.e., AMJJAS)
WRI anomalies as a function of duration and intensity under
the SSP2-4.5 (Fig. 3 A–C) and SSP5-8.5 scenarios (Fig. 3 D–F).
Historically, the largest (in magnitude) negative WRI anomalies
typically last 1 y. There is a nonnegligible probability of 2- to 3-y
persisting anomalies at about −10 mm·month−1, while anoma-
lies lasting longer than 3 y are unlikely (Fig. 3). Anthropogenic
climate change will make meteorological winter droughts last-
ing 3 to 10 y more likely and more acute, especially under the
SSP5-8.5 scenario (Fig. 3 D–F).

Large-Scale Circulation Shifts
The future increase in the probability of occurrence of intense
and prolonged rainfall deficits (Figs. 2F and 3) is suggestive of
a substantial climatic shift in the mean wintertime conditions
of SSA in the coming decades. In agreement with state-of-the-
art general circulation models (6, 38), SPEAR MED indicates
a substantial AMJJAS WRI reduction during the 21st century
(SI Appendix, Fig. S8A), especially in the shoulder seasons of
April–May (AM) and August–October (SI Appendix, Fig. S8B).
In both scenarios, the amplitude of the shift will be outside the
range of what could occur from low-frequency internal climate
variability in the decade 2020–2030 (Fig. 4 A–C), but the magni-
tude of the negative anomaly will be substantially larger under a
high-emission scenario.

The prolonged rainfall deficit experienced during winters
2015–2017 occurred along with positive large-scale anomalies in
sea-level pressure on the southern flank of the South Atlantic
and South Indian Subtropical High (3, 4). Higher sea-level
pressure has been invoked as the cause of fewer extratropical
cyclones over the South Atlantic and of a southward shift of
the moisture corridors, contributing to winter rainfall (3). Other
studies (4) find no significant regional trends over the last 40 y
in the number of cold fronts making landfall over SSA, but
highlight the shorter duration of rainfall events associated with
cold fronts due to larger sea-level pressure during postfrontal
days. Positive significant trends in sea-level pressure have been
observed in the Southern Hemisphere over the last 40 y and
have been related to the multidecadal expansion of the South-
ern Hemisphere’s summer and fall Hadley Cell (15, 16, 18). In
SPEAR MED, the forced (i.e., ensemble mean) decadal changes
in sea-level pressure are visible in the period 1980–2020 (SI
Appendix, Fig. S9), with the typical patterns that might dominate
at the end of the 21st century (SI Appendix, Fig. S10) emerging
around 2000–2010. This is in agreement with previous studies
(16, 17), suggesting that the forced signal associated with the
expansion of the Hadley Cell has emerged above the noise of
internal variability in the Southern Hemisphere in the 2000–2010
decade.

There is an evident seasonality in the projected large-scale
circulation anomalies over the South Atlantic Ocean and south
of SSA, with the most evident forced signals in AM and
August–September (AS) (Fig. 5). Positive anomalies of mean
sea-level pressure are overall suggestive of a poleward expan-
sion of the Hadley cell. Projected changes in the 300-hPa eddy
kinetic energy (a proxy for the storm track) show a south-
ward shift of the midlatitude storm track in AM and AS,
but not June–July (JJ). Indeed, the weakest forced signals
are projected in SPEAR MED at the peak of the rainy sea-
son in JJ (Fig. 5), consistent with the decadal forced mean
sea-level pressure signals in the 2010–20 decade (SI Appendix,
Fig. S9) and with the percent WRI reductions (SI Appendix,
Fig. S8B). Remarkably, the 2015–2017 meteorological drought
was also driven mainly by AM and AS rainfall deficits, asso-
ciated with large-scale anomalies more evident in, e.g., AM,
and similar to those just described above (3, 4, 6). These
seasonal aspects of the Southern Hemisphere forced circu-
lation changes coherently suggest that future meteorological
droughts might indeed have a similar seasonal evolution as that
in 2015–2017.

Comparison with Other Large Ensembles
We analyzed additional large ensembles from coupled models
with the same or coarser resolution that can provide an impor-
tant context to our results and inform us about uncertainties
due to model differences (32, 39): SPEAR LO; the Forecast-
Oriented Low Ocean Resolution model with (FLOR FA) and
without (FLOR) flux adjustment; the Community EARTH
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Fig. 2. (A–D) Empirical probability distribution of the 3-y winter rainfall anomalies due to internal variability alone (light pink, from CTRL) and natural
variability, natural forcing, and anthropogenic forcing (salmon, from SSP5-8.5) in the period 1980–2000 (A), 1990–2010 (B), 2000–2020 (C), and 2010–2030
(D). Black vertical lines represent the 2015–2017 AMJJAS rainfall anomaly (−11.5 mm/month, averaged value across GPCC, CRU, and UDEL). (E and F)
Decadal probability of occurrence of a 3-y winter rainfall anomaly equal to or worse than in 2015–2017 in HIST, SSP2-4.5, and SSP5-8.5. Shading denotes
the 95% CI from bootstrap resampling. The blue constant line denotes the CTRL probability for such an event, and the blue constant dashed line is
from the NATURAL run after concatenating all 30 ensemble members. (G and H) Probability (risk) ratios (to the mean 1921–1980) with 95% uncertainty
intervals for event 1517 in 2015–2017 (G) and at the end of the 21st century (2080–2100) (H). Models are top-down ordered from the most skillful in
reproducing WRI variability and seasonal cycle (SI Appendix, Fig. S14 and Table S2). Asterisk (∗) denotes models for which a relative threshold (first per-
centile) is used to estimate the probability (Materials and Methods). (I and J) As in E and F, but for a 4-y anomaly of the magnitude of the 2015–2017
drought.
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Fig. 3. (A–C) Change of probability of large annual AMJJAS rainfall anomalies (≤−0.75σ) as a function of duration (years) and intensity (mean WRI
anomaly over the drought-duration period) for the 2010–2040 period relative to 1921–1970 baseline (contours) (A), 2040–2070 period (B), and 2070–2100
(C) period under SSP2-4.5. The green dashed line encircles values that are outside the range of natural variability. (D–F) As in A–C, but for the SSP5-8.5
pathway.

System Model Large Ensemble (CESM-LENS) (30); and the
Max Planck Institute Grand Ensemble (MPI-GE) (26) (see
Materials and Methods and SI Appendix for the evaluation of
these models).

All models suggest a substantial rainfall reduction (SI
Appendix, Figs. S8B, S11, and S12), with CESM-LENS and
MPI-GE projecting a percent precipitation reduction pretty uni-
form throughout AMJJAS. Mean sea-level pressure changes are
overall suggestive of a poleward expansion of the descending
branch of the Hadley Cell (SI Appendix, Fig. S10), but with
anomaly patterns that are more consistent across models in AM
and less consistent in June–September. Indeed, the Subtropi-
cal Anticyclone response in the Southern Hemisphere features
larger intermodel uncertainty in the austral winter (40). A more
prolonged dry season into the late austral fall (AM) over SSA
is, therefore, a robust indication in terms of future precipitation
reduction and droughts risk.

Relative to SPEAR MED, the risk estimate is lower in
SPEAR LO (Fig. 2G), while FLOR suggests similar values. MPI-
GE, FLOR FA, and CEMS-LENS have a risk ratio larger than
SPEAR MED by a factor of 1.5, 1.8, and 2.8, respectively. By
the end of this century, all models agree on a probability of
occurrence for the event 1517 at least 90 times larger than in
the 20th century (Fig. 2H) under the highest-emission scenarios
(SSP5-8.5 or RCP8.5). Middle-of-the-road scenarios (SSP2-4.5
or RCP4.5) tend to suggest a risk ratio of about 30, while the low-
emission RCP2.6 scenario (only available for MPI-GE), aiming
to limit the increase of global mean temperature to 2 K, projects
a risk ratio of about 13.

Conclusions
The use of a high-resolution large ensemble provides a signifi-
cantly improved ability to simulate regional-scale SSA droughts
in both present and future conditions, despite large internal cli-
mate variability. We find that the rainfall deficit that led to the

Day Zero drought was 5.5 times more likely due to anthro-
pogenic climate change, with a CI of [4, 8]. We therefore are able,
through the use of a model with higher resolution and better cli-
matology, to further constrain the risk ratio of SSA drought at
and above the original [1.4, 6.4] estimate from ref. 5. This high-
lights the usefulness of high-resolution climate models to study
future drought risk and provides additional guidance to design
water management to avoid extreme drought.

Looking at the future, our results point to a dramatic increase
in the risk of meteorological droughts of similar or even more
serious magnitude by the end of the 21st century. Similarly to
what occurred in 2015–2017, this increased risk of meteorolog-
ical droughts is associated with a substantial rainfall reduction,
especially in the shoulder season (AM and AS).

A high-emission and intermediate-emission future scenario
are analyzed, highlighting that while there is uncertainty in the
increase in drought risk due to future uncertainty in forcings,
both scenarios lead to substantial increases, such that a drought
becomes a common occurrence. Combined with the likelihood
of increased water demand due to a growing population (3) and
increased evaporation due to higher temperatures (41), the more
frequent occurrence of wintertime meteorological droughts will
likely present a major challenge for managing water resources
in the region without adaptation and preparation. While these
results are for SSA, such shifts in drought risk are likely to occur
in other locations, with variable precipitation and large-scale cir-
culation shifts increasing the likelihood of multiyear extreme
droughts. These methods could then be applied elsewhere to
identify emerging drought risks.

Materials and Methods
SPEAR Model and Experiments. The main conclusions of this study are
obtained from the SPEAR (33, 42). SPEAR represents the newest model-
ing system for seasonal to multidecadal prediction which incorporates new
model development components that have occurred in the last decade at
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Fig. 4. Decadal evolution of wintertime (AMJJAS) rainfall mean anomalies (ensemble average, shading) relative to the 1921–1970 climate from the HIST
(A), SSP2-4.5 (B), and SSP5-8.5 (C) runs. Gray crosses denote changes in wintertime rainfall mean state that are not distinguishable from internal climate
variability, as estimated from fully coupled control simulations (see Materials and Methods for details).

the National Oceanic and Atmospheric Administration (NOAA) GFDL. These
include: a new dynamical core (43), revised atmospheric physics (44), a
new sea-ice and ocean model (45), and an enhanced land model (46). The
SPEAR atmospheric model uses 33 levels in the vertical and is run at dif-

ferent atmospheric-land horizontal resolutions: 0.5◦ (SPEAR MED) and 1◦

(SPEAR LO) in this paper. The intermediate 0.5◦ configuration, SPEAR MED,
is a compromise between the possibility to run a large ensemble of simula-
tions with available computation resources and retaining enough horizontal
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Fig. 5. Ensemble mean anomalies (shading) of AM, JJ, and AS sea-level pressure (Upper; hPa) and 300-hPa eddy kinetic energy (m2 s−2) for the period
2071–2100 relative to 1921–1970. Contours denote the 1921–1970 climatological values.

resolution to study regional climate and extremes. It is worth noting that the
SPEAR MED large ensemble features a horizontal grid spacing (0.5◦) that is
finer than those used in most of the previously used large ensembles [with
the exception of FLOR (31)], thus making these GFDL ensembles a unique
and unprecedented tool to study extremes and regional climate.

We used four different numerical experiments: 1) a long-term control
simulation (CTRL) to evaluate unforced natural variability; 2) an ensemble
driven by natural forcing only (NATURAL) to provide a baseline with only
natural forcing (i.e., volcanic eruptions and solar cycles); 3) an ensemble
driven by observed natural and anthropogenic forcing up to 2014 (HIST)
and then according to the intermediate (≈+3 K of global warming by the
end of the 21st century) SSP2-4.5 developed for the CMIP6 (35, 47); and 4) an
ensemble driven by observed natural and anthropogenic forcing up to 2014
(HIST) and then according to the CMIP6 high-emission, fossil fuel-dominated
(≈+5 K of global warming by the end of the 21st century) SSP5-8.5.

The 3,000-y CTRL simulation is driven by CO2 forcing kept constant at
1850 levels. Climate drifts associated with this long-term integration are
estimated to be very small and statistically insignificant for the winter SA
rainfall. The 30 members of the NATURAL ensemble are driven by the same
observed natural forcing (i.e., solar and volcanic) until year 2014, and by
only solar forcing (quasi-11-y cycle) after 2014, with the anthropogenic forc-
ing held fixed at the 1921 level. In the HIST + SSP5-8.5 (HIST + SSP2-4.5)
ensemble, each member is driven by observed natural and anthropogenic
forcing (greenhouse gases, anthropogenic aerosols, and ozone) up to year
2014 and by the SSP5-8.5 (SSP2-4.5) forcing afterward. More details about
how the SPEAR large ensemble is designed can be found in Delworth et al.
(2020) (33).

Model Evaluation. In addition to the model’s ability to reproduce the win-
tertime southern African climatology (Fig. 1 C–E), the performance of
SPEAR MED in simulating wintertime rainfall variability and historical trends
(1951–2017) over SSA was evaluated against three different observational
land rainfall datasets: the Global Precipitation Climatology Center (GPCC)
dataset (48), version 7; the Climate Research Unit high-resolution grids
of monthly rainfall at the University of East Anglia (49), version 3.24;
and the University of Delaware (UDEL) precipitation dataset, version 5
(http://climate.geog.udel.edu/∼climate/), all at 0.5◦ resolution. The choice
of these three gridded observed datasets, in place of scattered measure-
ments from the South African Weather Service meteorological stations, was
dictated by the need to be able to compare models with observations,

as done in previous studies (5). The values of these three precipitation
datasets for SSA were obtained from a limited number of stations and
different interpolation algorithms. As a consequence, they can feature,
locally, considerable differences (e.g., Fig. 1A and SI Appendix, Fig. S1). How-
ever, differences in area-averaged metrics like, e.g., the WRI, are minimal
(Fig. 1B), thus making our results independent from the choice of the single
precipitation dataset.

In order to have a realistic representation of the width of the distri-
bution of rainfall anomalies, it is key that SPEAR MED reproduces the
interannual, multiannual, and decadal natural variability of the SSA win-
ter rainfall. To check this, we worked out the SD of the detrended full, 3-y,
and 10-y low-pass-filtered WRI from the three observational datasets and
the SPEAR MED ensemble members over the common period 1921–2010 (SI
Appendix, Fig. S3). The SD of the observations was between 5 mm·month−1

(CRU) and 6 mm·month−1 (GPCC and UDEL) for the 3-y low-pass-filtered
WRI. The SD values from the model ranged from 4 to 6.3 mm·month−1.
The observed values are, therefore, within the range from the model, sug-
gesting that the model has the ability to properly estimate the magnitude
of 3-y lasting droughts. Similarly, a good agreement between SPEAR MED
and observations exists for the SDs calculated from the unfiltered WRI time
series (interannual variability) and from 10-y low-pass-filtered WRI (decadal
and longer variability), too.

The effect of internal natural variability is large for SSA winter rainfall
(27–29); thus, it is not appropriate to compare observed AMJJAS rainfall
trends directly with the ensemble mean or with each single ensemble mem-
ber, which may show contrasting signs (SI Appendix, Fig. S2). Instead, we
evaluated if SPEAR MED’s historical trends of AMJJAS rainfall are consistent
with observations over SSA. To do so, we computed rainfall trends over the
last 67 y (1951–2017) in GPCC, CRU, and UDEL and compared them with
individual members of the HIST + SSP5-8.5 ensembles over the same time
period.

If the observed trend at one grid point was within the range of those
simulated by the 30 HIST ensemble members, then we said that the model
is consistent with observations in that grid box. We found that SPEAR MED
is consistent with observations over most of southern Africa (SI Appendix,
Fig. S13).

Additional Large Ensembles. To assess the robustness and model dependence
of our results, we analyzed five additional large ensembles (SI Appendix,
Table S1): 1) the SPEAR LO ensemble (33); 2) the GFDL FLOR model, at
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0.5◦ land/atmosphere resolution; 3) the flux-adjusted FLOR (FLOR FA) large
ensembles, obtained imposing temperature and salinity flux adjustments
at the ocean surface to FLOR (50) (both with a land-atmospheric hori-
zontal resolution of 0.5◦); 4) the CESM-LENS (30), with land-atmospheric
horizontal resolution of approximately 1◦; and 5) the MPI-GE (26), with
land-atmospheric horizontal resolution of 1.8◦. These additional large
ensembles are available with various CMIP5 scenarios and are documented
in SI Appendix, Table S1. An evaluation of the wintertime climatology over
SSA showed that these models all underestimate AMJJAS mean rainfall
(Fig. 1 C–E and SI Appendix, Fig. S14 and Table S2). With the exception
of SPEAR LO, these models also underestimate the SD of the full 3-y and
10-y low-pass-filtered WRI (SI Appendix, Fig. S3). Critically, this means that
they also underestimate the width of the probability distribution of the 3-y
AMJJAS rainfall anomalies (SI Appendix, Fig. S15). In particular, CESM-LENS
and FLOR FA have SDs that are 50% and 40% smaller, respectively, suggest-
ing that they are poor tools for risk analysis over SSA. As they substantially
underestimate the probability of occurrence of event 1517, to quantify
changes in risk in a manner that implicitly accounts for model biases, we
used a 3-y WRI anomaly corresponding to the first percentile, which is the
percentile to which −11.5 mm/month corresponds to in observations and
SPEAR MED.

WRI. In this study, we focused on the regional-scale drought of the West-
ern Cape. We thus used the annual time series of the WRI (29) to monitor
interannual variability and monthly rainfall anomalies. To define the WRI,
we first selected the grid points where at least 65% of the total annual
rainfall occurred from April to September (Fig. 1 C–E and SI Appendix,
Fig. S14). Then, we took the areal mean of the extended winter (i.e., April–
September) rainfall over the irregular region defined above (Fig. 1 C–E and
SI Appendix, Fig. S14). The WRI is, thus, the area-averaged rainfall over
the portion of SSA that experiences a dry summer and a wet winter—that
is, a Mediterranean rainfall regime. This area encompasses the region of
intensely irrigated agriculture surrounding the metropolitan area of Cape
Town, as well as the water basins of the Breede and Berg Rivers, where
dams supplying water to Cape Town are located.

Detectability of the Mean Rainfall Change. To determine where and when
the decadal changes in AMJJAS rainfall start being caused by external forc-
ing, and not by multidecadal variability, we applied a Monte Carlo approach
to the long CTRL run: At each grid box, we randomly chose a 10-y period and
a nonoverlapping 50-y period (to mimic 1921–1970). Then, we computed the
time mean difference between the 10-y and 50-y time series. This difference
is solely associated with internal natural variability of the climate system.
This process was repeated 30 times (to mimic the 30-member ensemble); we
then took the ensemble mean of these differences. The whole process was
then repeated 10,000 times to create an empirical probability distribution of
these ensemble mean differences, which was used to assess the detectability
of decadal changes in rainfall. Anomalies outside the range of the dis-
tribution were attributed to external forcing and considered detectable
against internal climate variability (Fig. 4 and SI Appendix, Figs. S11
and S12).

Estimation of the Probability Distribution. We derived a probability distribu-
tion of the 3-y mean WRI anomalies due to natural variability alone from the
long CTRL run. We randomly selected a 50-y and 3-y sequence (nonoverlap-
ping) and then calculated the anomaly of the 3-y period relative to the 50-y
climatology. This choice mimics the 2015–2017 mean minus the 1921–1970
mean. We repeated this process N times (N = 10,000) to form a distribution
of the 3-y WRI anomalies (Fig. 2 A–D). The probability of occurrence of expe-
riencing a 3-y WRI anomaly equal to or less than the 2015–2017 anomaly—as
per the gridded datasets—is about 1% in CTRL and 0.7% from HIST, taking
the average of decadal probabilities over 1921–1970, respectively (Fig. 2E).
Similarly, we estimated the distribution of the 4-y WRI anomaly. The prob-
ability of occurrence of a WRI anomaly of the same intensity, but of one
additional year of duration, is 0.4% and 0.2% from the CTRL and HIST,
respectively.

To evaluate the decadal change in the probability of occurrence of a 3-y
WRI anomaly equal to or worse than that of 2015–17, we empirically esti-
mated a decadal-varying probability distribution using the HIST and SSP5-8.5
(SSP2-4.5) experiments. The probability distribution was estimated for a
20-y time window, so that, for example, that referred to as 2010 is built

from all years from 2001 to 2020. This choice was motivated by the need
to have a time period not too wide in order to assume the stationarity of
the probability distribution, but, at the same time, a number of instances
large enough to allow for sufficiently accurate estimates of probabilities of
rare events (e.g., 100-y return time). In a 20-y time window, there are 18
different 3-y WRI anomalies (relative to the climatological reference period
1921–1970). This leads to 18 × 30 = 540 different values when consider-
ing all of the 30 ensemble members, from which we empirically built the
decadal probability distribution. Once we have the decadal probability dis-
tribution, we can estimate the probability of occurrence, for each bidecadal
period, of 3-y WRI anomaly equal to or less than that observed in 2015–
2017 (−11.5 mm·month−1, obtained averaging GPCC, CRU, and UDEL) for
any random 3-y segment within the 20-y time window. The 95% CIs in
these probabilities were estimated by applying bootstrap-with-replacement
resampling 10,000 times. The same methodology was applied to estimate
the probability of occurrence of 4-y droughts.

We quantified the uncertainty in the estimate of the decadal probability
of occurrence, derived from only 540 different 3-y rainfall anomaly values,
as follows: We took the long 3,000-y CTRL and randomly selected 50-y and
3-y nonoverlapping periods and estimated the difference. We repeated this
step N times (with N = 10,000) to obtain a large population sample of N 3-y
anomalies, from which the probability of the event 1517 was estimated to
be ≈1%. From this large sample, we then randomly drew M realizations
(with replacement), with M≤N, and estimated the probability of occur-
rence. For each value of M, we repeated the last step 10,000 times and
obtained 10,000 different probability estimates, which allowed us to esti-
mate the 95% CI (SI Appendix, Fig. S4B). As expected, the CI decreased
with M up to approximately [0.9%, 1.2%] for M = 10,000. For values of
M less than 300, the uncertainty is so large that it is impossible to have
any sensible estimate of the probability of the event. For M = 540, the CI is
approximately [0.5%,1.7%], which we can consider sufficiently accurate for
our purposes.

Joint Probability Distribution of Drought Intensity and Duration. The proba-
bility distribution of a drought in the Cape Town’s Mediterranean area as
a function of duration and intensity was estimated from the historical and
projected AMJJAS WRI anomaly time series. The focus in this paper is on
severe droughts; therefore, we selected, for each time series, all contiguous
years for which the WRI anomaly was below −0.75 SD (≈−6 mm·month−1).
With this choice, we excluded years that were moderately and very mod-
erately dry. For each of these segments, we worked out the mean WRI
anomaly by averaging the annual WRI anomaly values over the whole
segment. We chose a 2-mm·month−1 × 1 y bin (Fig. 3) to work out the
percentage of the droughts within each bin. The analysis was performed
for the 1921–1970 time period and for the periods 2011–2040, 2041–2070,
and 2071–2100. To evaluate if the probability differences relative to 1921–
1970 are attributable to anthropogenic climate change, we applied the
same method to the 3,000-y CTRL. We randomly selected a 50-y and a 30-y
nonoverlapping time span and computed the number of droughts for each
duration-drought intensity bin. We repeated this 30 times to mimic the 30-
member ensemble and so worked out the probability differences between
the 50-y and 30-y periods. The whole process was then repeated 10,000
times to create an empirical probability distribution of the probability dif-
ferences for each bin: Anomalies outside the range of the distribution were
attributed to external forcing and considered detectable against internal
climate variability.

Data Availability. The data that support the findings of this study are
deposited in the National Centers for Environmental Information at https://
doi.org/10.25921/rwe5-fw03 (SPEAR, FLOR), in the Earth System Grid Fed-
eration Node at DKRZ at https://esgf-data.dkrz.de/projects/mpi-ge/ (MPI-
GE) (51), and in the NCAR’s Climate Data Gateway at https://doi.org/10.
5065/d6j101d1 (52).
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